

CuReSim-LoRM: a tool to simulate metabarcoding long reads

Y. Mesloub, D. Beury, F. Vandermeeren and S. Caboche

Context

- Metabarcoding = a rapid means of biodiversity assessment by identifying multiple taxa simultaneously in a sample using DNA sequencing
- Based on molecular markers conserved and shared across various taxonomic groups (e.g. 16S rRNA for bacteria)
- A routine application with the development of high-throughput short-read sequencing but:
 - a maximum of 500 bp-regions can be sequenced allowing one to reach, at best, the genus level and, for some bacterial taxa, not allowing one to discriminate between them

• Third-generation sequencing, such as Oxford Nanopore

GO@|

- Technologies (ONT), produces long reads (kb-Mb)
- Obtaining the full-length ribosomal RNA gene would permit one to reach a better taxonomic resolution at the species or the strain level but:
 - ONT sequencing produces reads with high error rates (8-15%) which will introduce biases during the analysis process

- Understanding the biases introduced during the analysis allows one to better interpret the biological results and take care of conclusions drawn from
- metabarcoding experiments
- To benchmark an analysis process, the ground truth, *i.e.* the real composition of the microbial community, needs to be known

Need a tool to simulate metabarcoding long reads in order to evaluate biases in the databases and the bioinformatics analyses dealing with metabarcoding data

Results

Comparison of NanoSim-H, DeepSimulator, and CuReSim-LoRM simulated Data with real data

Evaluation of CuReSim-LoRM with challenging datasets

Metrics	NewLot	CuReSim-LoRM	NanoSim-H	NanoSim-H	NanoSim-H	Deep-Simulator	2										
			Dataset1	Dataset2	Dataset3		Metrics	run1	sim.	run2	sim.	run3	sim.	reBasecalling	sim.	Urban	sim.
error rate	14.45	14.5	12.94	13.28	18.77	10.84	Error rate	17.41	17.4	16.39	16.45	14.24	14.35	11.64	11.2	10.59	10.6
%unmapped	3.4	5.5	6.5	6.6	9.6	0.01	%unmapped	16.8	15.76	0.7	4.9	2.6	3.9	4.5	3.7	0	1.6
%identity	86.6	86.6	87.8	87.2	82.7	89.4	%identity	84.2	84.5	84.8	85	86.8	86.8	88.8	89.3	89.8	89.9
SD	5.2	5	3.9	3.2	3.4	1.5	SD	4.7	4.6	4.3	4.6	5.2	5	4.9	4.5	3.6	3.8
precision_Z	1	1	0.99	1	1	1	precision_Z	1	1	1	1	1	1	1	1	1	1
recall_Z	0.96	0.94	0.92	0.93	0.9	1	recall_Z	0.83	0.84	0.99	0.95	0.97	0.96	0.95	0.96	1	0.98
precision_R	0.94	0.91	0.87	0.87	0.86	0.84	precision_R	0.94	0.92	0.96	0.93	0.95	0.94	0.93	0.91	0.94	0.92
recall_R	0.91	0.88	0.82	0.83	0.8	0.84	recall_R	0.8	0.81	0.95	0.91	0.94	0.92	0.9	0.89	0.94	0.9
precision_S	0.74	0.76	0.67	0.64	0.62	0.73	precision_S	0.71	0.73	0.78	0.77	0.81	0.81	0.76	0.79	0.69	0.75
recall_S	0.72	0.72	0.6	0.59	0.55	0.73	recall_S	0.6	0.61	0.77	0.73	0.78	0.78	0.72	0.76	0.69	0.74

Vietrics	NewLor	C IIKeSIM-LOKIVI	NanoSim-H	NanoSim-H	Nano51m-H	Deep-Simulator											
in concerned	i tem Lot	Curteonin Londin	Dataset1	Dataset2	Dataset3	Deep Simulator	Metrics	run1	sim.	run2	sim.	run3	sim.	reBasecalling	sim.	Urban	sim.
error rate	14.45	14.5	12.94	13.28	18.77	10.84	Error rate	17.41	17.4	16.39	16.45	14.24	14.35	11.64	11.2	10.59	10.6
%unmapped	3.4	5.5	6.5	6.6	9.6	0.01	%unmapped	16.8	15.76	0.7	4.9	2.6	3.9	4.5	3.7	0	1.6
%identity	86.6	86.6	87.8	87.2	82.7	89.4	%identity	84.2	84.5	84.8	85	86.8	86.8	88.8	89.3	89.8	89.9
SD	5.2	5	3.9	3.2	3.4	1.5	SD	4.7	4.6	4.3	4.6	5.2	5	4.9	4.5	3.6	3.8
precision_Z	1	1	0.99	1	1	1	precision_Z	1	1	1	1	1	1	1	1	1	1
recall_Z	0.96	0.94	0.92	0.93	0.9	1	recall_Z	0.83	0.84	0.99	0.95	0.97	0.96	0.95	0.96	1	0.98
precision_R	0.94	0.91	0.87	0.87	0.86	0.84	precision_R	0.94	0.92	0.96	0.93	0.95	0.94	0.93	0.91	0.94	0.92
recall_R	0.91	0.88	0.82	0.83	0.8	0.84	recall_R	0.8	0.81	0.95	0.91	0.94	0.92	0.9	0.89	0.94	0.9
precision_S	0.74	0.76	0.67	0.64	0.62	0.73	precision_S	0.71	0.73	0.78	0.77	0.81	0.81	0.76	0.79	0.69	0.75
recall_S	0.72	0.72	0.6	0.59	0.55	0.73	recall_S	0.6	0.61	0.77	0.73	0.78	0.78	0.72	0.76	0.69	0.74

Conclusion

CuReSim-LoRM is able (i) to produce simulated reads showing an error profile very close to the real data, (ii) to produce a read length distribution mimicking the real one, and (iii) to produce a wide range of data with varying error rates and length distributions. CuReSim-LoRM is the first tool able to simulate ONT metabarcoding reads.

Mesloub Y, Beury D, Vandermeeren F, Caboche S. CuReSim-LoRM: A Tool to Simulate Metabarcoding Long Reads. Int J Mol Sci. 2023 Sep 12;24(18):14005. doi: 10.3390/ijms241814005. PMID: 37762307; PMCID: PMC10531135.

